Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 15(4): 102344, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643721

ABSTRACT

The brown dog tick, Rhipicephalus sanguineus sensu lato (s.l.), is an important vector for Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever. Current public health prevention and control efforts to protect people involve preventing tick infestations on domestic animals and in and around houses. Primary prevention tools rely on acaricides, often synthetic pyrethroids (SPs); resistance to this chemical class is widespread in ticks and other arthropods. Rhipicephalus sanguineus s.l. is a complex that likely contains multiple unique species and although the distribution of this complex is global, there are differences in morphology, ecology, and perhaps vector competence among these major lineages. Two major lineages within Rh. sanguineus s.l., commonly referred to as temperate and tropical, have been documented from multiple locations in North America, but are thought to occupy different ecological niches. To evaluate potential acaricide resistance and better define the distributions of the tropical and temperate lineages throughout the US and in northern Mexico, we employed a highly multiplexed amplicon sequencing approach to characterize sequence diversity at: 1) three loci within the voltage-gated sodium channel (VGSC) gene, which contains numerous genetic mutations associated with resistance to SPs; 2) a region of the gamma-aminobutyric acid-gated chloride channel gene (GABA-Cl) containing several mutations associated with dieldrin/fipronil resistance in other species; and 3) three mitochondrial genes (COI, 12S, and 16S). We utilized a geographically diverse set of Rh sanguineus s.l. collected from domestic pets in the US in 2013 and a smaller set of ticks collected from canines in Baja California, Mexico in 2021. We determined that a single nucleotide polymorphism (T2134C) in domain III segment 6 of the VGSC, which has previously been associated with SP resistance in Rh. sanguineus s.l., was widespread and abundant in tropical lineage ticks (>50 %) but absent from the temperate lineage, suggesting that resistance to SPs may be common in the tropical lineage. We found evidence of multiple copies of GABA-Cl in ticks from both lineages, with some copies containing mutations associated with fipronil resistance in other species, but the effects of these patterns on fipronil resistance in Rh. sanguineus s.l. are currently unknown. The tropical lineage was abundant and geographically widespread, accounting for 79 % of analyzed ticks and present at 13/14 collection sites. The temperate and tropical lineages co-occurred in four US states, and as far north as New York. None of the ticks we examined were positive for Rickettsia rickettsii or Rickettsia massiliae.

2.
J Am Vet Med Assoc ; 262(5): 698-704, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38417252

ABSTRACT

Rocky Mountain spotted fever (RMSF) is an international and quintessential One Health problem. This paper synthesizes recent knowledge in One Health, binational RMSF concerns, and veterinary and human medical perspectives to this fatal, reemerging problem. RMSF, a life-threatening tick-borne disease caused by the bacterium Rickettsia rickettsii, emerged during the first decade of the 21st century in impoverished communities in the southwestern US and northern Mexico. Lack of an index of suspicion, delay in diagnosis, and delayed initiation of antibiotic treatment contribute to fatality. Campaigns targeting dog neutering, restraint to residents' properties, and on-dog and on-premises treatment with acaricides temporarily reduce prevalence but are often untenable economically. Contemporary Mexican RMSF is hyperendemic in small communities and cities, whereas epidemics occur in the western US primarily in small tribal communities. In in both locations, the epidemics are fueled by free-roaming dogs and massive brown dog tick populations. In the US, RMSF has a case fatality rate of 5% to 7%; among thousands of annual cases in Mexico, case fatality often exceeds 30%.1,2 Numerous case patients in US border states have recent travel histories to northern Mexico. Veterinarians and physicians should alert the public to RMSF risk, methods of prevention, and the importance of urgent treatment with doxycycline if symptomatic. One Health professionals contribute ideas to manage ticks and rickettsial disease and provide broad education for the public and medical professionals. Novel management approaches include vaccine development and deployment, acaricide resistance monitoring, and modeling to guide targeted dog population management and other interventions.

3.
J Med Entomol ; 60(5): 1073-1080, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37410023

ABSTRACT

Lagomorphs-principally rabbits and hares-have been implicated as hosts for vectors and reservoirs for pathogens associated with multiple rickettsial diseases. Western North America is home to diverse rickettsial pathogens which circulate among multiple wild and domestic hosts and tick and flea vectors. The purpose of this study was to assess lagomorphs and their ectoparasites in 2 locations in northern Baja California, Mexico, for exposure to and infection with rickettsial organisms. In total, 55 desert cottontail rabbits (Sylvilagus audubonii) (Baird) and 2 black-tailed jackrabbits (Lepus californicus) (Gray) were captured. In Mexicali, ticks were collected from 44% (14/32) of individuals, and were exclusively Haemaphysalis leporispalustrisNeumann (Acari: Ixodidae); in Ensenada, ticks were collected from 70% (16/23) individuals, and 95% were Dermacentor parumapertus. Euhoplopsyllus glacialis affinisBaker (Siphonaptera: Pulicidae) fleas were collected from 72% of rabbits and 1 jackrabbit from Mexicali, while the few fleas found on hosts in Ensenada were Echidnophaga gallinaceaWestwood (Siphonaptera: Pulicidae) and Cediopsylla inaequalis(Siphonaptera: Pulicidae). Rickettsia bellii was the only rickettsial organism detected and was identified in 88% of D. parumapertus and 67% of H. leporispalustris ticks from Ensenada. A single tissue sample from a jackrabbit was positive for R. belli (Rickettsiales: Rickettsiaceae). Hosts in Ensenada had a significantly higher prevalence of rickettsial antibodies than hosts in Mexicali (52.3% vs. 21.4%). Although R. bellii is not regarded as pathogenic in humans or other mammals, it may contribute to immunity to other rickettsiae. The marked difference in distribution of ticks, fleas, and rickettsial exposure between the 2 locations suggests that disease transmission risk may vary markedly between communities within the same region.


Subject(s)
Flea Infestations , Hares , Ixodidae , Lagomorpha , Rickettsia , Siphonaptera , Ticks , Animals , Humans , Rabbits , Mexico , Ticks/microbiology , Ixodidae/microbiology , Siphonaptera/microbiology , Flea Infestations/epidemiology , Flea Infestations/veterinary
4.
Ticks Tick Borne Dis ; 13(6): 102020, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35987116

ABSTRACT

Ixodes (Ixodes) mojavensis, n. sp. (Acari: Ixodidae), is described from all parasitic stages collected from the endangered vole Microtus californicus scirpensis Bailey, 1900 (Rodentia: Cricetidae), Mus musculus L. 1758 (Rodentia: Muridae), and Reithrodontomys megalotis (Baird; 1857) (Rodentia: Cricetidae) in the Amargosa Valley of California. When first collected in 2014, this tick was tentatively identified as Ixodes minor Neumann, 1902 because the nucleotide similarity between its 16S rDNA sequence and a homologous GenBank sequence from an I. minor from the eastern U.S. was 99.51%. Nevertheless, adults of I. mojavensis differ morphologically from I. minor by hypostomal dentition, absence of a spur on palpal segment I, and punctation patterns; nymphs by the shapes of basis capituli, auriculae, cervical grooves and external files of hypostomal denticles; and larvae by the length of idiosomal setae and hypostomal dentition. DNA sequencing of fragments of 4 different genes, 12S rDNA, 16S rDNA, cytochrome c oxidase subunit I (COI), and intergenic transcribed spacer 2 (ITS2) of I. mojavensis and of closely related species of Ixodes shows that the mitochondrial gene sequences of the new tick species are almost identical to the I. minor homologous genes. Phylogenetically, the two species do not cluster in mutually exclusive monophyletic clades. However, ITS2 sequences of I. mojavensis and I. minor diverge deeply (≥ 5.74% maximum likelihood divergence) and are as different as homologous genes from other recognized species. The discrepancy between the two sets of genes is suggestive of past mitochondrial introgression or incomplete mitochondrial lineage sorting.

5.
Trends Parasitol ; 38(9): 805-814, 2022 09.
Article in English | MEDLINE | ID: mdl-35820944

ABSTRACT

Invasive tick species and the pathogens they transmit pose increasing threats to human and animal health around the world. Little attention has been paid to the characteristics enabling tick species to invade. Here we analyze examples of tick invasion events in North America to identify factors that facilitated the invasion. Commonalities among invasive ticks are that they thrive in anthropogenically modified habitats, feed on either domestic animals or wildlife occurring in high density, and can survive across a broad range of climatic conditions. Invasive tick species varied widely in life history and reproductive habits, suggesting that invasion occurs when multiple characteristics converge. The combination of potential characteristics leading to invasion, however, improves our ability to predict future invaders and inform surveillance.


Subject(s)
Tick-Borne Diseases , Ticks , Animals , Animals, Wild , Ecosystem , Humans , North America , Tick-Borne Diseases/epidemiology
6.
Am J Trop Med Hyg ; 104(6): 2305-2311, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33819179

ABSTRACT

Rhipicephalus sanguineus is a species complex of ticks that vector disease worldwide. Feeding primarily on dogs, members of the complex also feed incidentally on humans, potentially transmitting disease agents such as Rickettsia rickettsii, Rickettsia conorii, and Ehrlichia species. There are two genetic Rh. sanguineus lineages in North America, designated as the temperate and tropical lineages, which had occurred in discrete locations, although there is now range overlap in parts of California and Arizona. Rh. sanguineus in Europe are reportedly more aggressive toward humans during hot weather, increasing the risk of pathogen transmission to humans. The aim of this study was to assess the impact of hot weather on choice between humans and dog hosts among tropical and temperate lineage Rh. sanguineus individuals. Ticks in a two-choice olfactometer migrated toward a dog or human in trials at room (23.5°C) or high temperature (38°C). At 38°C, 2.5 times more tropical lineage adults chose humans compared with room temperature, whereas temperate lineage adults demonstrated a 66% reduction in preference for dogs and a slight increase in preference for humans. Fewer nymphs chose either host at 38°C than at room temperature in both lineages. These results demonstrate that risk of disease transmission to humans may be increased during periods of hot weather, where either lineage is present, and that hot weather events associated with climatic change may result in more frequent rickettsial disease outbreaks.


Subject(s)
Host Specificity , Rhipicephalus sanguineus/genetics , Rhipicephalus sanguineus/physiology , Temperature , Animals , Disease Vectors , Dog Diseases/microbiology , Dog Diseases/transmission , Dogs , Female , Male , Nymph/microbiology , Nymph/physiology , Phylogeny , Rhipicephalus sanguineus/classification , Rhipicephalus sanguineus/microbiology , Rickettsia rickettsii/pathogenicity , Tropical Climate , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...